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WHERE?
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Outline
• Aim: Provide a basic introduction to physics of quantum degenerate dipolar

gases for people working in ultra-cold atomic physics

Focus will be on polarized magnetic gases, but some electric dipole results will be

presented.
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Why Dipoles?
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1 Dipole-Dipole Interaction (DDI)

General (non-polarized) case

z

rd1

d2

Udd(r) =
Cdd

4π

(
d̂1 · d̂2 − 3(d̂1 · r̂)(d̂2 · r̂)

r3

)
=

∑
ν,ν′=x,y,z

d̂1νQνν′d̂2ν′

where Qνν′ = (δνν′ − 3r̂ν r̂ν′)/r
3 is traceless tensor, hats denote unit vectors.

• Cdd = µ0µ
2
m for permanent magnetic dipoles of moment µm

• Cdd = d2/ε0 for permanent electric dipoles of moment d.

See Kawaguchi and Ueda [Phys. Rep. 2012] for more details of spinor-dipolar systems.
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Polarized case

Dipoles polarized in a strong external field along z

z

r
θ

Potential simplifies to:

Udd(r) =
Cdd

4π

(
1− 3 cos2 θ

r3

)
.
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Anisotropy of the DDI

θm≈57.4

Udd<0 Udd>0 Udd=0

attractive repulsive

F

Force

F F

F

F

• Anisotropic angular dependence [∼
spherical harmonic︷ ︸︸ ︷
Y20(θ) ∼

Legendre polynomial︷ ︸︸ ︷
P2(cos(θ)) ]:

– E.g. Attractive for θ = 0 (i.e. head-to-tail)

– E.g. Repulsive for θ = π
2 (i.e. side-by-side)

– Udd = 0 at the magic angle θm = cos−1
(

1√
3

)
' 54.7◦.

• The force is non-central (i.e. not along r̂)

Fdd =
3Cdd

4π

[
r̂

(
1− 3 cos2 θ

r4

)
− θ̂

(
sin 2θ

r4

)]
.
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Is the DDI long ranged?

Test extensiveness of chemical potential (or energy per particle) of a large uniform

system in D dimensions using

It =

ˆ ∞
rmin

dr rD−1Uint(r),

with rmin some short distance cutoff. For a long-ranged interaction It will diverge

as r →∞.

Neglecting anisotropy in DDI:

• D = 3, non-extensive (long ranged)

• D = 1, 2 extensive (short ranged).

Note there are alternative definitions of “long-ranged”.
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Conservation of angular momentum?

Two particles in free space with total angular momentum L = x1×p1 +x2×p2, and

internal forces due to DDIs F = F1 = −∇1Udd(r) (= −F2)

L̇ = (x1 − x2)× F 6= 0

since F non-central.

Reason: The polarizing field breaks rotational invariance.

In general we must consider both orbital and spin angular momentum, i.e.

J =L + S
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Scattering: partial wave phase shifts

The scattering amplitude is determined by the phase shifts δl = δl(k)

f (k, θ) =
1

2ik

∞∑
l=0

(2l + 1)(e2iδl − 1)Pl(cos θ).

For a potential that decreases as 1/rn for large r:

δl ∼ k2l+1 if l < (n− 3)/2

δl ∼ kn−2 otherwise

For n > 3, notably van der Waals (n = 6), s-wave dominates as k → 0 with δ0 ∼ k.

• Can replace true interaction potential by isotropic pseudo-potential gδ(r) with

g = 4πa~2/m where a is the s-wave scattering length (limk→0 δ0 = −ak).

For n = 3, all δl ∼ k as k → 0, i.e. all partial waves contribute.

Anisotropy of DDI induces couplings between different partial waves, and spin is

not conserved (dipolar relaxation).
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Dipolar Pseudo-Potential

Yi and You [PRA 2001] have shown that the low energy scattering of bosonic par-

ticles is described with a pseudo-potential1

Uint(r) = gδ(r) + Udd(r).

I.e. Born scattering amplitude fB(k̂f , k̂i) ∝
´
dr ei(ki−kf )·rUint(r) reproduces the ex-

act one.

Short-ranged effects are included in g, which also depends on the dipole moment.2
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Ronen et al., PRA 74, 033611 (2006)

Comparison of exact calculations for reduced T-matrix elements (solid) tll′ ≡ T l
′0
l0 (k)

2k
against Born results (dashed).

1Not too large dipoles and away from shape resonances.
2Note: Also see work by Derevianko, Wang, and Bohn.
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Inelastic scattering and loss
Important inelastic 2-body processes:

• spin-exchange (conserves S)

• dipolar relaxation (doesn’t conserve S)

Maximally polarized states cannot have spin-exchange.

Dipolar relaxation (DR)- the spin of one of the colliding atoms is flipped (allowed

as DDI does not conserve S but only J = L + S). The cross-section for this

σDR ∼(dipole moment)3.

Loss rate βDR ∼ 2〈σDRvrel〉therm

dn

dt
∼ −βDRn

2.

For 52Cr βDR = 4× 10−12cm3s−1 at B = 1G [Hensler et al. Appl. Phys. B (2003)]3.

3-body recombination is another important process. For Cr near a Feshbach

resonance the rate was found to be L3 ∼ 2× 10−40m6/s [PRL 101, 080401 (2008)]

c.f. 87Rb with L3 ∼ 2×10−41m6/s [Appl. Phys. B 69, 257 (1999)], where ṅ = −L3n
3.

3This rate is more than 2 orders of magnitude higher than for Na, Rb
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Controlling interactions

• Feshbach resonances controlling the s-wave interaction have been demon-

strated in the atomic dipolar systems (Cr, Er, Dy).

• Tuning the DDI proposed by Giovanazzi et al. [PRL 89, 130201 (2002)]: ro-

tate the polarizing field (tilted at angle ϕ to z) at a frequency Ω that satisfies

ωLarmor � Ω� ωtrap

r

θ

ϕ
z

rapidly rotating 

dipoles about z

z

Averaging the interaction over T = 2π/Ω gives

Udd =
Cdd

4π

(
1− 3 cos2 θ

r3

) −1
2→1︷ ︸︸ ︷(

3 cos2 ϕ− 1

2

)
= αUdd, α ∈ [−1

2, 1].
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2 Systems

Atoms & molecules

Heteronuclear molecules in low rovibrational states can have large electric dipoles

• Electric dipoles typically given in debye 1D ≈3.335× 10−30 Cm ≈ 0.39ea0

• Diatomic molecules typically have moments up to ∼ 10 D (i.e. a few ea0)

• Ground states are rotationally symmetric in lab frame and external E-field

(∼ 104 Vcm−1) is needed to orient in lab frame

Magnetic dipoles atoms such as Cr, Er, Eu, Dy,... have a large ground state

magnetic moment

• Alkali atoms have µm ∼ µB

• Dy (most magnetic atom) has µm = 10µB.

Other systems: Rydberg atoms, Light induced dipoles (not discussed here)
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First Dipolar Quantum Gas: Pfau group Stuttgart (2005)

Chromium-52 has 6 valence shell electrons with parallel spin alignment [Ar]3d5 4s1

with ground electronic state 7S3 i.e. J = 3, S = 3, L = 0 , also I = 0.

• MOT limited by dipolar relaxation (DR). Pump to mJ = −3 and evaporate in

optical dipole trap.

• Variation: Use DR to perform lossless cooling (limited to recoil temperature)

[see Nat. Phys. 2, 765 (2006)].

[from PRL 94, 160401 (2005)]

weak !eld seeking state

absolute ground state

mJ=-3

mJ=-2

kBT

atoms
Zeeman

DR

reduce 

B-!eld

DR energetically

forbidden

hot atoms 

lose Kinetic E

Demagnetization Cooling
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Degenerate Polar molecules: a holy grail

Polar molecules have much larger dipoles than atoms d ∼ ea0 whereas for mag-

netic atoms µm ∼ µB
C

(mag)
dd

C
(elec)
dd

=
µ0µ

2
m

d2/ε0
∼ α2 ∼ 10−4

Variety of techniques being pursued: buffer gas cooling, Stark deceleration, ...

most success to date with bi-Alkali’s [87Rb40K: JILA group, Science 322, 231 (2008)]
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Cold dipolar gases: experimental milestones

year system group

2005 BEC 52Cr Stuttgart

2007 BEC 52Cr Paris

2008 Fermi 40K87Rb (T ∼ 2TF ) Boulder

2010 Bose 41K87Rb Tokyo

2011 BEC 164Dy Illinois→Stanford

2012 DFG 161Dy (T ∼ 0.2TF ) Illinois→Stanford Also BEC of 162Dy as coolant

2012 BEC 168Er Innsbruck

2013 DFG 167Er (T ∼ 0.2TF ) Innsbruck

DFG = degenerate fermi gas
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Interaction Parameters

Convenient to introduce a length scale for the DDI roughly comparable to the s-

wave scattering length for the contact interaction: the dipole length

add ≡
Cddm

12π~2
,

Another important figure of merit is the ratio of the dipole to contact interactions

εdd ≡
add

a
=
Cdd

3g
.

A particle with εdd > 1 is referred to as being dipole dominated.

Species µm or d add a εdd

87Rb 1µB 0.7 a0 100 a0 0.007

52Cr 6µB 16 a0 100 a0 0.16

168Er 7µB 67 a0 ∼ 175 a0 ∼ 0.38

164Dy 10µB 130 a0 ∼ 100 a0 ∼ 1.3

40K87Rb 0.6 D 3700 a0 ∼ 100 a0 ∼ 37
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3 Semiclassical Theory of Normal Dipolar Gases

Consider spin polarized system! Nice system for learning about the effects of DDIs

on quantum gases.

Introduction to semiclassical theory

Basic idea: Wigner distribution function W (R,k) gives the number of particles in

the phase space volume about R and k. The Wigner function relates to the one-

particle density matrix as

G(R, r) =

ˆ
dk

(2π)3
W (R,k)eik·r.

Note G(x,x′) = 〈ψ̂†(x)ψ̂(x′)〉, but have transformed to R = 1
2(x + x′), r = x− x′.

From W we can get the position and momentum densities

n(R) =

ˆ
dk

(2π)3
W (R,k) = G(R,0)

ñ(k) =

ˆ
dR

(2π)3
W (R,k)
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Such a semi-classical description is applicable to the normal part of a Bose gas at

kBT � ~ωtrap and to a normal Fermi gas if EF � ~ωtrap.

Thermodynamic information can be extracted using

S = −
ˆ
dx dk

(2π)3
{W (x,k) lnW (x,k) + [1−W (x,k) ln[1−W (x,k)]}

The density-density correlations can be treated using Hartree-Fock (Wick) factor-

ization

G(2)(x,x′) = 〈ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x)〉 =

Hartree/direct︷ ︸︸ ︷
n(x)n(x′) +

Fermi/exchange︷ ︸︸ ︷
η|G(1)(x,x′)|2 ,

with η = +1 for bosons, and η = −1 for fermions.

For the case of a trap V (x) = 1
2mω

2
ρ(ρ

2 + λ2z2) the energy functional is

E =

ˆ
dk

~2k2

2m
ñ(k)+

ˆ
dRV (R)n(R)+

1

2

ˆ
dR

ˆ
drUint(r)

[
n(x)n(x′) + η|G(1)(x,x′)|2

]
,

All of the above terms can be obtained from W . Progressing any further requires

some model for W (or procedure to determine W by minimizing E).
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Hartree treatment of T = 0 Fermions

Goral et al [PRA 63, 033606 (2001)] considered T = 0 Fermions and chose a

Thomas-Fermi ansatz

W (R,k) = θ([6π2n(R)]2/3 − k2),

where θ is Heaviside’s unit step function and noting kF = (6π2n)1/3. This gives

E =

ˆ
dR


kinetic energy︷ ︸︸ ︷
~2

m

[6π2n(R)]5/3

20π2
+

potential energy︷ ︸︸ ︷
V (R)n(R)

+
1

2

ˆ
dR

ˆ
drUdd(r)n(R+

1

2
r)n(R−1

2
r)

Using that g = 0 for Fermions. Note the exchange vanishes (see why later!) and E

only depends on the position density.
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Important Integral

Consider the Gaussian ansatz

n(r) =
Nν3/2

π3/2σ2
ρσza

3
ho

exp

[
− ν

a2
ho

(
ρ2

σ2
ρ

+
z2

σ2
z

)]
,

where the dimensionless widths are {σρ, σz}, and aho =
√

~/mω̄ with ω̄ = 3
√
ωxωyωz,

and ν is a dimensionless parameter. The direct interaction is

ED =
1

2

ˆ
dx

ˆ
dx′ Vdd(x− x′)n(x)n(x′)

= −N
2ν3/2~ω̄√

2π

add

aho

1

σ2
ρσz

f (σρ/σz) ,

where

f (κ) =
1 + 2κ2

1− κ2
− 3κ2arctanh

√
1− κ2

(1− κ2)3/2
,

with f (0) = 1, f (1) = 0, and f (∞) = −2.
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Behaviour of direct interaction

• ED > 0 for oblate densities (σρ/σz > 1)

• ED < 0 for prolate densities (σρ/σz < 1)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−2

−1.5

−1

−0.5

0

0.5

1

κ

f(
κ
)

25



Energy functional

E =

kinetic︷ ︸︸ ︷
0.6742~ω̄

N 5/3ν

(σ2
ρσz)

2/3
+

trap︷ ︸︸ ︷
N~ω̄

4νλ2/3
(2σ2

ρ + σ2
zλ

2)−

DDI︷ ︸︸ ︷
N 2ν3/2~ω̄√

2π

add

aho

1

σ2
ρσz

f (σρ/σz)

where we have used 319/6(π/2)1/3

55/2 ≈ 0.6742. Setting ν = N−1/3 makes the kinetic and

trap terms go as N 4/3, while the interaction term is N 3/2. Thus

E

N 4/3~ω̄
= 0.6742

1

(σ2
ρσz)

2/3
+

1

4λ2/3
(2σ2

ρ + σ2
zλ

2)− Dt√
2πσ2

ρσz
f (σρ/σz)

setting Dt = N 1/6add/aho.

[Adapted from PRA 63, 033606 (2001)]
trap aspect ratio  λ

~Dt/λ2/3

interaction
strength

~Dt/λ2/3interaction
strength

σρ / σz

distortion

aspect ratio: λ 
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Magnetostriction

Spatial distortion from interactions is a form of electro-/magneto-striction. System

always elongates along direction dipoles are polarized.

Wikipedia: “Magnetostriction (cf. electrostriction) is a property of ferromagnetic

materials that causes them to change their shape or dimensions during the process

of magnetization. . . . The effect was first identified in 1842 by James Joule when

observing a sample of iron.”
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Exchange interactions? (i.e. including Fock)

Why is the exchange energy zero in the Hartree calculation?

Observation by Miyakawa et al [PRA 77 061603 (2008)] was that we need to allow

for momentum space to distort.

The exchange interaction can be written as:

EE =
η

2

ˆ
dxdkdk′

(2π)6
Ũdd(k− k′)W (x,k)W (x,k′),

where Ũdd(k) = 1
3Cdd(3 cos2 θk − 1) is the Fourier transform of Udd(r).

As a simple example, consider a homogeneous system of volume V with

W (x,k) = θ([6π2n]2/3 − 1

α
k2
ρ − α2k2

z),

where α parameterizes the momentum distortion. In this case the direct energy is

zero and

EE = −CddV
2

J(α3 − 1)n2, (taken η=-1)

where

J(u) =
1

u

[√
1 + u

sinh−1√u√
u

− 1

]
− 1

3

28



u

J
(u

)
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0.3

0.4

0.5

0.6

In this case the exchange interactions compete against the kinetic energy (which

itself prefers α = 1)

Ekin =
V
5
EFn

(
1

α2
+ 2α

)
,

leading to a value of α ≤ 1 i.e. momentum distribution distorts along kz: momentum

space magnetostriction.
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HF vs F and Observations:

• Miyakawa treatment can be extended to trapped system (T = 0, [see PRA 77

061603 (2008)]) are predicts both momentum and spatial distortion.

• HF treatment does not prediict λcrit ≈ 5 above which the system is stable.

Direct interactions →position space distortion

Exchange interactions →momentum space distortion

To explore quantum statistical effects need to go to T 6= 0 to apply theory to a

normal Bose gas for comparison.
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General (T 6= 0) Semiclassical Treatment

Hartree-Fock semiclassical treatment is4

W (x,k) =
1

e[ε(x,k)−µ]/kBT − η
ε(x,k) =

~2k2

2m
+ V (x) + 2gn(x) + ΦD(x) + ηΦE(x,k)

where g = 0 for Fermions and we have introduced the direct and exchange inter-

action terms

ΦD(x) =

ˆ
dx′dk′

(2π)3
Udd(x− x′)W (x′,k′) =

ˆ
dx′Udd(x− x′)n(x′),

ΦE(x,k) =

ˆ
dk′

(2π)3
Ũdd(k− k′)W (x,k′)

These equations have to be solved self-consistently for the Wigner function.
4Obtained variationally by minimizing the free energy. Also assuming a quadratic Hamiltonian (HF) and constraining

the total number of atoms.
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General Hartree theory

Obtained by neglecting the exchange dipolar term (but keep Fock for contact). In

this case

ε(x,k) =
~2k2

2m
+ Veff(x)

with

Veff(x) = V (x) + 2gn(x) + ΦD(x)

The simple k-dependence allows us to integrate for density

n(x) =

ˆ
dk

(2π)3
W (x,k) =

1

λ3
dB

ζη3/2

(
e[µ−Veff(x)]/kBT

)
where λdB = h/

√
2πmkBT and

ζηα(z) =

∞∑
j=1

ηj−1zj/jα

=
1

Γ(α)

ˆ ∞
0

tα−1

et/z − ηdt.

is the polylogarithm function [aka Bose (η = 1) or Fermi (η = −1) functions and
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Thus the Hartree solution can be obtained via n(x) [i.e. we don’t need W (x,k)].

Notes

• For T = 0 Fermions we have

W (x,k) = θ[µ− ε(x,k)]→ basis of variational treatments

• ΦD(x) is most easily calculated using the convolution theorem

ΦD(x) = F−1
{
Ũdd(k)F{n(x)}

}
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Hartree results

• Stability boundaries strikingly different for bosons and fermions

• Saturated Bose gas is fragile

• Double valued instability line emerges for bosons in pancake traps.
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General Hartree-Fock theory
HF calculations for trapped system are demanding but are tractable.

Simple characterization of magneto-striction effects is through the rms widths

σν =

[
1

N

ˆ
dxdk

(2π)3
ν2W (x,k)

]1/2

,

with momentum and position space density distortions defined as

α ≡ σkx
σkz

, β ≡ 1

λ

σx
σz
,

Also consider the pair correlation function

C(R, r) = G(2)(R, r)− n(R +
1

2
r)n(R− 1

2
r) = η

∣∣∣∣ˆ dk

(2π)3
W (R,k)eik·r

∣∣∣∣2

β
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Hartree vs. Fock Observations (part 2):

Direct interactions →position space distortion (prolate)

Exchange interactions →momentum space distortion:

bosons oblate

fermions prolate

position
density

momentum
density

non-interacting
Fermions Bosons

direct
interaction

exchange
interaction

interacting
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Extensions and other work

• Simplified variational treatments for trapped systems at finite T (see work

by Nikuni and coworkers), and multicomponent systems [Bienias, PRA 88,

043604 (2013)]

• Possible to use semiclassical theory to consider excitations and expansion

dynamics [e.g. T Sogo et al., NJP 11, 055017 (2009)]

• Much simpler to implement: a local HF theory [Baillie et al PRA 86, 041603

(2012)] based on idea of a local momentum distortion:

ε(x,k) =
~2

2m

[
κρ(x)k2

ρ + κz(x)k2
z

]
+ Veff(x).
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Variational vs full calculations: what next?
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[From Zhang PRA 80, 053614 (2009)]

T = 0 trapped fermions with pure DDIs
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4 Dipolar Bose-Einstein Condensates

Gross-Pitaevskii equation (GPE)

From the usual GPE equation the replacement gδ(r) → gδ(r) + Udd(r) gets us the

non-local (dipolar) GPE:

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + (V + g|ψ|2 + Φdd)ψ

where Φdd(x) =
´
dx′Udd(x− x′)|ψ(x′)|2 (c.f. ΦD). The condensate wave function ψ

is normalized to N .

With time-independent form (for ground states) of

µψ = − ~2

2m
∇2ψ + (V + g|ψ|2 + Φdd)ψ,

where µ is the chemical potential. Validations of the dipolar GPE against diffu-

sion Monte-Carlo were performed by Bohn, Blume and co-workers (also see As-

trakharchik).
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Condensate energy functional

The condensate energy functional is

E[ψ] =

ˆ
dxψ∗(x)

[
− ~2

2m
∇2 + V (x) +

1

2
g|ψ(x)|2 +

1

2
Φdd(x)

]
ψ(x)

The time-independent GPE can be derived by minimizing E subject to the normal-

ization constraint

N =

ˆ
dx|ψ(x)|2,

which introduces µ as a Lagrange multiplier.

Note bothE andN are constants of motion under evolution with the time-dependent

GPE [unless V = V (x, t)].
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Thomas-Fermi (TF) ground state

Contact case:

The TF solution, valid for Na/aho � 1 where interactions dominate, is obtained by

neglecting the kinetic energy. Has an inverted parabola form:

|ψ|2TF =


µ−V
g , for µ > V

0 otherwise

→ npeak

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
with npeak = µ/g = 15N/8πRxRyRz, and the TF radius Rx =

√
2µ/mω2

x etc.

Dipolar case:

O’Dell and coworkers showed [PRL 92, 250401 (2004); also see van Bijnen et al

PRA (2010)] that despite the nonlocal potential Φdd, the dipolar TF solution is of

the same parabolic form! However, the TF radii are not as simply related to the

trap as in the contact case.
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Dipolar TF solution: Φdd

Key point: for a density of parabolic form Φdd is quadratic in (x, y, z).

For the cylindrical case Rρ = Rx = Ry and let κ ≡ Rρ/Rz be the TF anisotropy (c.f.

trap anisotropy λ = ωz/ωρ). For the inverted parabola form |ψ|2TF:

Φin
dd(x) =

npeakCdd

3

[
ρ2

R2
ρ

− 2z2

R2
z

− f (κ)

(
1− 3

2

ρ2 − 2z2

R2
ρ −R2

z

)]
, valid inside condensate

where f (κ) [= 1+2κ2

1−κ2 −
3κ2arctanh

√
1−κ2

(1−κ2)3/2
] was introduced earlier.

Outside the condensate (i.e. where ρ2/R2
ρ + z2/R2

z > 1) the asymptotic expression

for large distances |x| is basically that of an N atom dipole:

Φout
dd (x) =

NCdd

4π|x|3


giant dipole︷ ︸︸ ︷(
1− 3 cos2 θ

)
+

shape dependent higher multipole︷ ︸︸ ︷
R2
ρ −R2

z

|x|2
(

9

14
− 45

7

z2

|x|2 +
15

2

z4

|x|4
)

+O

(
Rρ, Rz

|x|

)4

 ,
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Dipolar TF solution: µ and R

The TF solution is then obtained by solving

µ = V (x) + g|ψ(x)|2TF + Φdd(x).

Solving for the constant terms gives the chemical potential

µ = gnpeak[1− εddf (κ)].

Solving for ρ2 and z2 terms gives

Rρ =

[
15gNκ

4πmω2
ρ

{
1 + εdd

(
3κ2f (κ)

2(1− κ2)
− 1

)}]1/5

,

and hence Rρ = κRz, where κ is given by a solution of the transcendental equation

3κ2

[
εddf (κ)

1− κ2

(
λ2

2
+ 1

)
− 1

]
+ (εdd − 1)(κ2 − λ2) = 0.
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Stability of TF solution

0 0.5 1 1.5
0

1

2

3

4

5

stable
metastable

unstable

ε
dd

κ

• For εdd < 1 there is a single stable solution (global minimum)

• For εdd > 1 there is a global minimum with κ = 0 (needle shaped solution).

– For λ < λcrit = 5.17 then there is a finite εcrit
dd below which there is a

metastable (local min) and unstable (saddle pt) solutions.

∗ At εdd = εcrit
dd a quadrupolar mode goes soft.

– For λ > λcrit , then εcrit
dd =∞
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Other TF properties

Must be cautious applying this theory beyond εdd = 1:

• For εdd > 1 phonon instabilities can occur (see Bogoliubov treatment later)

– Also, short wavelength roton instabilities can occur (see roton discussion

later)

• The energy of a cylindrical parabolic state |ψ|2TF for any Rρ and Rz is (neglect-

ing kinetic)

E =

trap︷ ︸︸ ︷
N

14λ2/3
~ω̄

(
2
R2
ρ

a2
ho

+ λ2R
2
z

a2
ho

)
+

contact+DDIs︷ ︸︸ ︷
15N 2~ω̄

7

a3
ho

R2
ρRz

(
a

aho
− add

aho
f (κ)

)
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Hydrodynamic description of dynamics

• Hydrodynamics description following [Castin & Dum, PRL 77, 5315 (1996)].

Noting that the wavefunction can be written as

ψ =
√
neiφ

with velocity field

v =
~
m
∇φ,

the dynamics of the system in the TF regime [i.e. time dependent GPE ne-

glecting the quantum pressure term −~2∇2
√
n/2m

√
n ] is

∂n

∂t
= −∇ · (nv), continuity eq.

m
∂v

∂t
= −∇

(
mv2

2
+ V + gn + Φdd

)
Euler eq.
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Scaling solutions to the hydrodynamic equations

A class of scaling solutions are given by:

n(x, t) = n0(t)

[
1− x2

R2
x(t)
− y2

R2
y(t)
− z2

R2
z(t)

]
,

v(x, t) =
1

2
∇[αx(t)x

2 + αy(t)y
2 + αz(t)z

2],

where n0(t) = 15N/[8πRx(t)Ry(t)Rz(t)], and αj = Ṙj/Rj. Substituting the scaling

solution into the continuity and Euler equations yields the solutions

R̈x = −ω2
x(t)Rx +

15Ng

4πmRxRz

[
1

R2
x

− εdd(t)

(
1

R2
x

+
3

2

f (Rx/Rz)

R2
x −R2

z

)]
,

R̈z = −ω2
z(t)Rz +

15Ng

4πmR2
x

[
1

R2
z

+ 2εdd(t)

(
1

R2
z

+
3

2

f (Rx/Rz)

R2
x −R2

z

)]
,

where ωj(t) allows the description of time-dependent traps (modulation or switch

off), similarly the DDI could be changed in time [via εdd(t)].
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Gaussian Solution

Another useful approach is to set

ψ =

√
N

π3/2σ2
ρσza

3
ho

exp

[
− 1

2a2
ho

(
ρ2

σ2
ρ

+
z2

σ2
z

)]
,

so that |ψ|2 corresponds to our Gaussian ansatz used earlier with ν = 1.

Evaluating the energy functional we obtain

E =

kinetic︷ ︸︸ ︷
N~ω̄

4

(
2

σ2
ρ

+
1

σ2
z

)
+

trap︷ ︸︸ ︷
N~ω̄
4λ2/3

(2σ2
ρ + λ2σ2

z) +

contact + DDIs︷ ︸︸ ︷
N 2~ω̄√
2πσ2

ρσz

(
a

aho
− add

aho
f (σρ/σz)

)
.

This approach can be extended to dynamics by making the widths {σρ, σz} time-

dependent variational parameters and by introducing associated variational phases.

writing:
2E

N~ω̄
=

1

2

(
2

σ2
ρ

+
1

σ2
z

)
+

1

2λ2/3
(2σ2

ρ + λ2σ2
z) +

√
2

π

N

σ2
ρσz

a

aho
(1− εddf (σρ/σz)) ,

shows that for Na/aho � 1 and εdd > 1 then global minimum is a needle solution

with σρ → 0 (E → −∞).
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Trapped condensate stability: experimental comparison
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Solitons

What is a soliton?

Wikipedia: “...a self-reinforcing solitary wave (a wave packet or pulse) that main-

tains its shape while it travels at constant speed.”

A dark soliton is a localized absence of atoms (dip) in the atomic field, observed

in condensates with a > 0. Dark solitons are constrained to propagate in the

nonlinear medium (the condensate!). In contrast a bright soliton is a localized

wave packet that can occur for a quasi-1D condensate with a < 0.

Train of bright solitons in 7Li produced in a quasi-1D wave guide with attractive contact interactions. K.E. Strecker, G.

Partridge, A.G. Truscott , and R.G. Hulet, "Formation and Propagation of Matter Wave Soliton Trains", Nature (2002)
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Bright solitons in dipolar BECs

A novel prediction for dipolar condensates is the existence of 2D bright solitons

[Pedri et al PRL (2005)].

Consider the Gaussian energy functional in the absence of radial confinement

E =
N~ωz

4

(
2

σ2
ρ

+
1

σ2
z

)
+
N~ωz

4
σ2
z +

N 2~ωz√
2πσ2

ρσz

(
a

az
− add

az
f (σρ/σz)

)
,

with σρ, σz the widths in units of az =
√

~/mωz.
Consider the case where the z-confinement is strong, so that we can take σz ≈ 1.

We then get

E(σρ) =
N~ωz

4

(
2

σ2
ρ

)
+
N 2~ωz√

2πσ2
ρ

(
a

az
− add

az
f (σρ)

)
+ const.

For pure contact interactions both kinetic and interactions terms scale as E ∼
σ−2
ρ , i.e. monotonic in σρ, and depending on the value of Na, E(σρ) ether increases

with σρ (collapse instability) or decreases (expansion instability). Thus 2D solitons

are not stable.
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Quasi-2D condition for a bright soliton

With dipolar interactions a minimum can occur in E(σρ). Writing it as

E(σρ) =
N

2
~ωz

1 + Aa− Aaddf (σρ)

σ2
ρ

,

with A = N
az

√
2
π , we clearly need E(σρ → 0) → +∞ (to avoid collapse), i.e. [using

f (0) = 1]

1 + A(a− add) > 0

But we also need E(∞) = 0− to have a local minimum. Given f (∞) → −2, this

means

1 + A(a + 2add) < 0

Combined conditions:

add <
1

A
+ a < −2add,

This is only satisfied for add < 0, i.e. negatively tuned dipoles.
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Example and 3D breakdown
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Example parameters for a = 20 a0 and N = 10, 000 atoms with ωz = 2π × 700s−1.
Left: Parameters and quasi-2D conditions

Right 3 subplots: Gaussian energy function for 3 parameter sets.
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Inelastic collision of two bright dipolar solitons

tim
e ->

[From Pedri etal., PRL 2005]
Inelastic collision of solitons: quasi-2D simulation from Pedri et al., PRL (2005).
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Full numerical solution of time independent GPE

A number of groups have performed full numerical calculations for the time-dependent

and time-independent GPE with DDIs. We briefly review an important technique:

Cylindrical solution technique:

Seminal work by Ronen and coworkers [PRA 2006] demonstrated an accurate

and efficient method for solving the dipolar GPE and Bogoliubov excitations in a

cylindrical harmonic trap. Two important innovations in that work are:

1. It is necessary to take Fourier transforms to evaluate Φdd(x) = F−1{Ũdd(k)F{n(x)}}
(z transformed separately). Consider the function F (ρ) = eimφf (ρ) with Fourier

transform

f̃ (kρ, φk) = F{F} =

ˆ ∞
0

dρ ρ

ˆ 2π

0

dφeik·ρeimφf (ρ)

=

ˆ ∞
0

dρ ρ

ˆ 2π

0

dφ eikρρ cos(φ−φk)+imφf (ρ)

= i−meimφk
ˆ ∞

0

dρ ρ 2πJm(kρρ) f (ρ) = 2πi−meimφkHm{f (ρ)}

where Hm{f (ρ)} ≡
´∞

0 dρ ρ Jm(kρρ) f (ρ) is the Hankel transform of order m.
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This can be implemented a using a Bessel quadrature.

2. Cutoff interaction potential. The k-space interaction Ũdd(k) = 1
3Cdd(3 cos2 α−1)

is much nicer than in r-space. However the long range nature of the interac-

tion causes phantom interactions with aliased copies of the condensate →
slow convergence with grid extent. Can remedy by cutting-off the interaction:

UR
dd(r) ≡


Cdd
4π

1−3 cos2 θ
r3 , r < R

0, otherwise

where R is the system size (e.g. grid extent). Fortunately this has an analytic

transform:

ŨR
dd(k) = Ũdd(k)×

[
1 + 3

cos(Rk)

R2k2
− 3

sin(Rk)

R3k3

]
.

More general, e.g. cylindrical cutoffs Lu et al [PRA 2010], are beneficial for

highly anisotropic systems.
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GPE calculations: stability

 

[From Ronen PRL (2007)] [From Wilson PRA (2009)]

LEFT: Stability diagram of a purely dipolar condensate (stable regions shaded). D = 3Nadd/aρ, with aρ =
√
~/mωρ.

RIGHT: GPE stability diagram for parameter regime of Koch et al experiment.
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Expts & GPE calculations: collapse dynamics

[From PRL 101, 080401 (2008)]

(a) Feshbach ramp of a. (b), (c) samples images after thold = 0.4 ms, in (c) the thermal cloud is subtracted. (d) (upper)

experimental results; (lower) GPE simulations including 3-body loss. Experiments for Cr-52 in a nearly spherical trap

with ω̄ ∼ 2π × 500 Hz, N ≈ 20× 103.
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5 Bogoliubov theory for a dipolar condensate

Manybody Hamiltonian

For a uniform system in d-dimensions with volume V = Ld the bosonic field is

ψ̂(x) =
∑
k

φk(x)âk, where φk(x) =
1√
V
eik·x,

and the manybody Hamiltonian is

Ĥ =

ˆ
dx ψ̂†(x)

−~2∇2

2m
ψ̂(x) +

1

2

ˆ
dx ψ̂†(x)ψ̂†(x′)Uint(x− x′)ψ̂(x′)ψ̂(x),

=
∑
k

ε0
kâ
†
kâk +

1

2V

∑
k1,k2,k3,k4

Ũint(k1 − k3) â†k1
â†k2

âk3âk4δk1+k2,k3+k4,

where ε0
k = ~2k2/2m, Ũint(k) = g + Ũdd(k).
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Quadratic Hamiltonian for condensed system

Assuming a condensate we set â0, â
†
0 →

√
N0. Substituting this into the Hamilto-

nian and only keeping terms of order N 2
0 and N0 , the interaction part becomes

Ĥint≈
1

2V

N 2
0 Ũint(0)+N0

∑
k6=0

{ Direct︷ ︸︸ ︷
Ũint(0)

(
â†kâk + â†−kâ−k

)
+Ũint(k)(

Exchange︷ ︸︸ ︷
â†kâk + â†−kâ−k+

Pair Excitation︷ ︸︸ ︷
â†kâ

†
−k + âkâ−k )

}
To consider states of fixed total number we use N ≈ N0 + 1

2

∑
k6=0

(
â†kâk + â†−kâ−k

)
,

to replace N0 → N , which gives

Ĥint ≈
1

2V

N 2Ũint(0) + N
∑
k6=0

{
Ũint(k)

(
â†kâk + â†−kâ−k

)
+ Ũint(k)

(
â†kâ

†
−k + âkâ−k

)} ,
i.e. cancelling the direct interaction term. Setting n = N/V we have

Ĥ =
N 2Ũint(0)

2V
+

1

2

∑
k6=0

[(
ε0
k + nŨint(k)

) (
â†kâk + â†−kâ−k

)
+ nŨint(k)

(
â†kâ

†
−k + âkâ−k

)]
,
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Diagonalizing quadratic Hamiltonian

The quasiparticle transformations âk = ukα̂k − vkα̂†−k, with inverse transformation

α̂k = ukâk + vkâ
†
−k. Require u2

k − v2
k = 1 to ensure the transformation is canonical

(i.e. [α̂k, α̂
†
k] = 1).

Ĥ = 1
2Ũint(0)n2V +

∑
k 6=0

[(
ε0
k + nŨint(k)

)
v2
k − nŨint(k)ukvk

]
+1

2

∑
k6=0

[(
ε0
k + nŨint(k)

) (
u2
k + v2

k

)
− 2nŨint(k)ukvk

] (
α̂†kα̂k + α̂†−kα̂−k

)
+1

2

∑
k6=0

[
nŨint(k)

(
u2
k + v2

k

)
− 2

(
ε0
k + nŨint(k)

)
ukvk

] (
α̂†kα̂

†
−k + α̂kα̂−k

)
.

The last off-diagonal term can be eliminated by choosing uk and vk to satisfy

nŨint(k)
(
u2
k + v2

k

)
= 2

(
ε0
k + nŨint(k)

)
ukvk.

Taking uk = cosh θk and vk = sinh θk [ensures u2
k − v2

k = 1] and solving above Eq:

tanh 2θk =
nŨint(k)

ε0
k + nŨint(k)

.
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Using cosh(θ) =
√

1
2[cosh 2θ − 1], cosh 2θ = cosh[arctanh(x)] = 1√

1−x2 with x =

nŨ/[ε + nŨ ] etc., we get

v2
k = u2

k − 1 = 1
2

(
ε0
k + nŨint(k)

εk
− 1

)
,

where

εk =

√(
ε0
k + nŨint(k)

)2 −
(
nŨint(k)

)2
.

Thus we have the Bogoliubov description of the excitations:

ε =
√
ε0
k

(
ε0
k + 2nŨint(k)

)
, (1)

uk =

√√√√1
2

(
ε0
k + nŨint(k)

εk
+ 1

)
, (2)

vk =

√√√√1
2

(
ε0
k + nŨint(k)

εk
− 1

)
sign(Ũint(k)) (3)

Note: Assuming stable, i.e. ε0
k + nŨint(k) > 0, we have θk > 0 for repulsive interac-

tions, θk = 0 for non-interacting and θk < 0 for attractive interactions.
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In the Bogoliubov basis the quadratic Hamiltonian is diagonal

Ĥ =
1

2
Ũint(0)n2V − 1

2

∑
k6=0

(
ε0
k + nŨint(k)− εk

)
+ 1

2

∑
k6=0

εk

(
α̂†kα̂k + α̂†−kα̂−k

)
.

• These results all revert to the usual contact case if we replace Ũint(k)→ g.

• This can be generalized to the trapped case and solved using the techniques

discussed for the GPE (e.g. see Ronen et al., PRA (2006)).
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Stability of a uniform 3D dipolar BEC

A necessary for condition for stability is that the system is dynamically and thermo-

dynamically stable. The requires that all ε are real and positive.

For a BEC with DDIs Ũint(k) = Ũint(θk) and we need to concern ourselves with

θk = π/2 where Ũint = g(1−εdd) [cf. θk = 0 where Ũint = g(1+2εdd)]. The Bogoliubov

spectrum is real and positive if Ũint ≥ 0, i.e.

εdd ≤ 1, (stabilty condition 3D uniform)

x

z

x

z

phononphonon

phononphonon

3D DDI in k-space: role of phonons.
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Speed of sound

In the 3D uniform system (εdd < 1) the excitation spectrum is linear (phonon like)

for small k. However the slope, and hence the speed of sound c is anisotropic.

cρ = lim
kρ→0

ε(kρ, kz = 0)

kρ
= c0

√
1− εdd,

cz = lim
kz→0

ε(kρ = 0, kz)

kz
= c0

√
1 + 2εdd,

where c0 =
√
gn/m is the speed of sound for the contact interactions alone.

[From Bismut etal PRL109,155302 (2012)]

Bragg spectroscopy at fixed momentum transfer (•) along z, (◦) along x.
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6 Quasi-2D System

Quasi-2D interaction

Assume tight confinement along z provided by V = 1
2mω

2
zz

2 and assume the con-

densate and excitations can all be taken as

ψ ∼ ψ(ρ)
√
nho(z),

where nho(z) = 1
lz
√
π
e−z

2/l2z is the oscillator ground state density, with lz =
√

~/mωz.
The tight direction can be integrated out to give a quasi-2D interaction:

Ũq2D(kρ) =

ˆ
dkz Ũint(k)[ñho(kz)]

2.

to obtain [e.g. see Pedri PRL (2005)]

Ũq2D(kρ) =
g√
2πlz

+
gdd√
2πlz

F

(
1√
2
kρlz

)
,

with F (q) = 2− 3
√
πqeq

2
erfc(q) and introducing gdd = Cdd

3 .
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Momentum dependence of Quasi-2D interaction

Limits F (0) = 2, F (∞) = −1
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z
l z
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3D→ quasi-2D DDI in k-space

A uniform quasi-2D condensate of density n has chemical potential [neglecting z

confinement energy]

µq2D = nŨq2D(0) = n[g + 2gdd]/
√

2πlz

Note: for gdd > 0 the long wavelength interaction is repulsive and the system ap-

pears stable even for g = 0. However, need to carefully look at kρ > 0.
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Rotons

What is a roton?

The "roton minimum" is the local minimum observed in the excitation spectrum of

superfluid Helium.

The excitation spectrum of superfluid He at two pressures at T = 1.1 K. Dots, SVP, open circles, 25.3 atm, Henshaw

and Woods [Proc. 7th Int. Conf. on LTP, (1961)]; triangles, 1.25 K, 24.26 atm, [Dietrich et al. PRA (1972)]
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Rotons in a quasi-2D dipolar condensate

Immediate consequence of the k-dependence (high k attractiveness) of the quasi-

2D interaction is that the dispersion relation is modified. This can allow a roton-like

excitation to emerge: first predicted by Santos et al [PRL 2003] (also earlier work

by O’Dell on light induced dipoles).

The Bogoliubov theory derived immediately applies to 2D if there is a condensate

[or can be adapted to quasi-condensates, see Mora & Castin PRA (2003)]. The

dispersion relation is

ε(kρ) =

√
~2k2

ρ

2m

{~2k2
ρ

2m
+ 2nŨq2D(kρ)

}
.
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Roton example
For appropriately values of g, Cdd and n, the spectrum has a finite-k local minimum:
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nṼ (k )/[ h̄2k 2/2m + nṼ (k ) ]

Roton dispersion relation, k-space interaction and Bogoliubov amplitudes. Parameters: g = 0, ngdd = 1.5~ωz.

Careful: Is quasi-2D Valid?
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Why do interactions lower the energy at high k?

Excitations of wavelength shorter than lz create prolate density modulations that

lower the DDI energy.
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Density Fluctuations

It is interesting to consider the Fourier transformed density operator.

Using that the field operator is ψ̂(x) =
∑

k
1√
A
eik·xâk and n̂(x) = ψ̂†(x)ψ̂(x), the

Fourier transformed density operator

n̂q =

ˆ
dx e−iq·xn̂(x) =

∑
k

â†k−qâk,

with n̂†q = n̂−q. For a condensed Bose gas

n̂q ≈ nδq0 +
√
n(â†q + â−q),

the density fluctuation

δn̂q = n̂q − 〈n̂q〉 ≈
√
n(uq − vq)(α̂†q + α̂−q).
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Static structure factor
The density fluctuations are characterized by the static structure factor

S(q) =
1

N
〈δn̂†qδn̂q〉 ≈ (uq − vq)2〈α̂qα̂

†
q + α̂†qα̂q〉 =

~2q2

2mε(q)
coth

[
ε(q)

2kBT

]
,

Here we have used 〈α̂†qα̂q〉 = [eε(q)/kBT−1]−1. Note S(q→ 0) = kBT
µ [compressibility].
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Roton dispersion relation, k-space interaction and Bogoliubov amplitudes.
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Stability in 2D
Two ways that the system can become dynamically unstable

Phonon unstable: energy of k → 0 mode becomes imaginary. Occurs when

µq2D < 0, i.e. g < −2gdd.

Roton unstable: energy of k > 0 (typically k ∼ 1/lz) mode becomes imaginary.
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Stability and roton phase diagram. Example dispersion relations (dashed parts are imaginary).

74



Summary

Main topicscovered in my lectures:

• Basic features of the DDI, systems and experiments

• Semiclassical analysis of normal Bose + Fermi gases: direct/exchange and

magnetostriction

• Dipolar BECs: Thomas-Fermi; bright solitons in 2D; stability.

• Bogoliubov theory; stability and sound.

• Quasi-2D regime - rotons and fluctuations.
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